571 research outputs found

    Statistics of fully turbulent impinging jets

    Get PDF
    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the entire wall jet. The turbulent heat flux and Reynolds stress tensor are analysed and brought into coherence with the primary and secondary ring vortices of the wall jet. Budget terms of the Reynolds stress tensor are given as data base for the improvement of turbulence models

    Tradeoff between short-term and long-term adaptation in a changing environment

    Get PDF
    We investigate the competition dynamics of two microbial or viral strains that live in an environment that switches periodically between two states. One of the strains is adapted to the long-term environment, but pays a short-term cost, while the other is adapted to the short-term environment and pays a cost in the long term. We explore the tradeoff between these alternative strategies in extensive numerical simulations, and present a simple analytic model that can predict the outcome of these competitions as a function of the mutation rate and the time scale of the environmental changes. Our model is relevant for arboviruses, which alternate between different host species on a regular basis.Comment: 9 pages, 3 figures, PRE in pres

    The endemic gastropod fauna of Lake Titicaca : correlation between molecular evolution and hydrographic history

    Get PDF
    Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake´s biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28–0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46–1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance was the most likely limiting factor in the evolution of Altiplano species flocks

    Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of highly active antiretroviral therapy (HAART), plasma levels of human immunodeficiency type-1 (HIV-1) rapidly decay to below the limit of detection of standard clinical assays. However, reactivation of remaining latently infected memory CD4<sup>+ </sup>T cells is a source of continued virus production, forcing patients to remain on HAART despite clinically undetectable viral loads. Unfortunately, the latent reservoir decays slowly, with a half-life of up to 44 months, making it the major known obstacle to the eradication of HIV-1 infection. However, the mechanism underlying the long half-life of the latent reservoir is unknown. The most likely potential mechanisms are low-level viral replication and the intrinsic stability of latently infected cells.</p> <p>Methods</p> <p>Here we use a mathematical model of T cell dynamics in the setting of HIV-1 infection to probe the decay characteristics of the latent reservoir upon initiation of HAART. We compare the behavior of this model to patient derived data in order to gain insight into the role of low-level viral replication in the setting of HAART.</p> <p>Results</p> <p>By comparing the behavior of our model to patient derived data, we find that the viral dynamics observed in patients on HAART could be consistent with low-level viral replication but that this replication would not significantly affect the decay rate of the latent reservoir. Rather than low-level replication, the intrinsic stability of latently infected cells and the rate at which they are reactivated primarily determine the observed reservoir decay rate according to the predictions of our model.</p> <p>Conclusion</p> <p>The intrinsic stability of the latent reservoir has important implications for efforts to eradicate HIV-1 infection and suggests that intensified HAART would not accelerate the decay of the latent reservoir.</p

    The Golden Egg: An Austere Field Light Attack Aircraft Team Angry Geese

    Get PDF
    In response to the 2021 AIAA Undergraduate Team Aircraft Design Competition request for proposals, Team Angry Geese of the University of Alabama in Huntsville has developed a conceptual design, the “Golden Egg”, an affordable light attack aircraft that can operate from short, austere fields and replace current helicopters in performing close air support missions. The aircraft must carry a crew of two, an integrated gun for ground targets, and at least 3000 pounds of armament. The aircraft must accomplish an attack mission with a full weapons load and a long-range ferry mission with a 60% weapons load. Additional design goals include enhanced survivability, the capability to deploy a variety of missiles, rockets, and bombs, and producing a “best-value” design that considers acquisition and operational costs. The baseline concept was developed after reviewing the design and performance of similar attack aircraft and helicopters. The current design has a streamlined body with an aspect ratio 6 tapered wing, a H-tail, and tricycle landing gear. An integrated F-404 turbofan engine allows the aircraft to meet flight requirements especially with its intake uniquely placed on top of the fuselage to mitigate potential debris hazards. The armament includes an integrated 20 mm gun and a combination of missiles and guided bombs. This initial design is estimated to weigh just under 24,407 lbf. Strategic material selection is currently being performed to reduce weight with structural strength, cost, and survivability in mind
    corecore